CO Sensors for Reformate Powered Fuel Cells

Rangachary (Mukund) Mukundan

Eric Brosha

Roger Lujan

Fernando Garzon (Sensor Team Leader)

MST-11

Los Alamos National Laboratory

Los Alamos NM 87545 USA

Objectives

- Reformate gas powered fuel cell systems require sensors for carbon monoxide level monitoring and feedback control
 - A high temperature sensor (>200°C) is required for measurement of 0.1 to 2% CO in reformate gas for PROX reactor control
 - The reformate gas could either be from a low temperature WGS reactor or methanol reformer
 - A low temperature sensor for measuring 10-100 ppm CO concentrations for stack poisoning control
 - This sensor can be used to control the air bleed into the fuel cell anode
 - This sensor could also be used to control the oxygen input of the PROX reactor

Approach (Low Temperature)

- Low temperature amperometric device based on CO inhibition of hydrogen oxidation kinetics
 - Use Nafion® as the proton conducting membrane
 - Use Pt or Ru electrode as working electrode
 - Electrode is sensitive to CO poisoning
 - Use Pt-Ru electrode as a counter electrode
 - Electrode is tolerant to the presence of CO

Proton conducting membrane

Approach (High Temperature)

- High Temperature device based on the differential inhibition of the hydrogen oxidation reaction at an oxide/metal interface
 - Use high temperature protonconducting oxides like strontium and barium cerate or calcium and strontium zirconate
 - Commercially available H₂ sensor (NOTORP, TYK America)
 - Modify electrode configurations to study CO poisoning effects

Proton conducting Perovskite oxide

Approach (High Temperature)

 Potentiometric CO sensor based on the mixedpotential developed at an oxide electrolyte/metal electrode interface

$$V_O^{\cdot \cdot} + \frac{1}{2}O_2 + 2e^- \rightarrow O_O$$

$$CO \text{ sensor in air}$$

$$CO + O_O \rightarrow CO_2 + V_O^{\cdot \cdot} + 2e^-$$

$$H_2 + O_O \rightarrow H_2O + V_O^{\cdot \cdot} + 2e^-$$

$$CO \text{ sensor in } H_2$$

- Use YSZ(zirconia) and CGO(Ceria) electrolytes
- Use various (Pt, Pd, Au, Ni) metal electrode combinations

 A. Hashimoto et al. Electrochem. and Solid

State Letters, **5(1)** H1-H3 (2002)

- Working Electrode
 - Pt/C/Nafion : 0.22mg/cm² of Pt
- Counter Electrode
 - Pt/Ru/C/Nafion : 0.25mg/cm² of Pt/Ru(50/50)alloy
- Electrolyte
 - Nafion 1135
- Both the Pt/C and the Pt/Ru/C electrodes are good at hydrogen oxidation and both of them get poisoned by the CO
- The CO poisoning is not easily reversible
 - Recovery takes hours without air bleeding

- Working Electrode
 - Pt/C/Nafion : 0.22mg/cm² of Pt
- Counter Electrode
 - Ru/C/Nafion : 0.12mg/cm² of Ru
- Electrolyte
 - Nafion 1135
- The Ru/C electrode is not very efficient at H₂ oxidation
- Both the electrodes get poisoned by the CO, the Ru/C electrode to a lesser extent
- The CO from the Ru/C electrode can be easily stripped at voltages <-0.5V (see inset)

- Working Electrode
 - Pt/C/Nafion : 0.22mg/cm² of Pt
- Counter Electrode
 - Ru/C/Nafion : 0.12mg/cm² of Ru
- Electrolyte
 - Nafion 1135
- Reproducible sensor signal was attainable when sensor was operated at -0.7V
- Sensor is slow, almost 10 mins to 90% of response level
- Sensitivity is low, < 0.3mamps change for 100 ppm CO

- Working Electrode
 - Pt/Nafion : 10mg/cm² of Pt
- Counter Electrode
 - Pt-Ru/Nafion: 10mg/cm² of Pt-Ru (50/50) alloy
- Electrolyte
 - Nafion 117
- Both the Pt and Pt/Ru alloy electrodes are good for H₂ oxidation
- There is very little effect of CO on the Pt/Ru alloy electrode.
 - This electrode could serve as a pseudoreference electrode
- The Pt electrode gets poisoned by the CO which can easily be cleaned at voltages > 0.4V

- The extent of poisoning on the Pt electrode can be used to give a useful sensor response
- The current at 0.3V decreases from 15mamps to <5mamps when the CO content in the H₂ stream is increased from 0 to 50ppm.
- The final CO can be cleaned by applying a 0.8V potential for approx. one minute
- Slow Response time (>5 mins) when CO is introduced

Milestone: Operation at 70°C

- Stable response obtained at 70°C
- Elevated temperature improves the response of the sensor
- No CO cleanup is required
- Response time: 1 2mins
- Sensor sensitivity is greatly reduced
 - 100 ppm of CO
 80% change at room temperature
 16% change at 70°C
- Baseline recovery is still slow

Useful to protect fuel cell from spikes

Proton Conductors (High Temperature)

Electrolyte

• $SrZr_{0.9}Y_{0.1}O_{2.95}$, $SrCe_{0.95}Yb_{0.05}O_{2.975}$ and $BaCe_{0.8}Gd_{0.2}O_{2.9}$

- Electrodes
 - Pt, Au, Ni and Pd

- Negligible response to CO
 - CO adsorption at temperatures >250°C is not significant to affect the hydrogen oxidation reaction $H_2 \rightarrow 2H^+ + 2e^-$

Oxygen Conductors (High Temperature)

Electrolyte

- 8mole%YSZ $(Zr_{0.85}Y_{0.15}O_{1.93})$ or 20mole%CGO $(Ce_{0.8}Gd_{0.2}O_{1.9})$ or
- 20mole%EBO(Bi_{0.8}Er_{0.2}O_{1.9-8})
- Electrodes
 - Pt, Au
- Kinetic Control (Electrode morphology)
- Stable CO response in Air (tested for up to 2 months)
- Response time < 10sec
- Reproducible results from multiple sensors

Pt / Ce_{0.8}Gd_{0.2}O_{1.9} / Au

Patent application filed

Accomplishments (High temperature)

- Electrolyte
 - 20mole%CGO (Ce_{0.8}Gd_{0.2}O_{1.9})
- Electrode
 - Pt and Ni (1 μm sputtered)
- Lower operating temperature (250°C)
- Response of 35mV @ 500ppm CO
- Response decay with time
- Improvement under -ve bias

$$CO_{Ni} + O_O \rightarrow CO_2 + V_O^{\cdot \cdot} + 2e^-$$

• The potential of the pseudo reference electrode (Ni) may be changing with time

Base Gas = $70\%H_2/30\%CO_2(H_2O)$

Milestone: Ceria based sensor

- Electrolyte
 - 20mole%CGO (Ce_{0.8}Gd_{0.2}O_{1.9})
- Electrode
 - Pt and Ni (1 μm sputtered)
- Lower operating temperature (240°C)
- Response of 6mV @ 100ppm CO
- Response was stable over a period of 2 days
- Approx. 1-2 minute response time
- Unstable baseline

Base Gas = $70\%H_2/30\%CO_2(H_2O)$

Improvement?

- Electrolyte
 - 3mole%YSZ
- Electrode
 - Pd paint and Ni (1 µm sputtered)
- Lowered operating temperature (185°C)
- Response of 60mV @ 100ppm CO (10 fold increase)
- Stable baseline
- Approx. 1 minute response time
- High noise (need to average)
- Stability and Reproducibility?

Base Gas = $70\%H_2/30\%CO_2(H_2O)$

Reviewer's Questions

How is Oxygen replaced in YSZ based sensor? Stable?

$$H_2O + V_O^- + 2e^- \rightarrow H_2 + O_O$$

- Ceramic can operate under reformate conditions for extended periods
- Hydration, high loadings, stability of PEM assembly?
 - Novel oxide based sensor to sense 25-100ppm CO for stack control. Stable operating temperature of 200-300°C should be achievable by self heated sensor positioned between PROX reactor and Fuel Cell
- <1 minute response time?
 - Demonstrated in oxide based sensor in air. Should be achievable under reformate conditions when the sensor is optimized

Project Timeline

Fy01 Fy02 **Fy03** Fy04 Low temp CO sensor Elucidated the working Project begins prototype developed principle of these low Sense 100-1000ppm CO in temperature sensors H_2 Demonstrate low Oxide proton conductor temperature CO sensor thin film technology Improved Low Temperature sensor Stable operation at 70°C developed Works at Room Temperature Stable response to 10-200ppm CO in H₂ Demonstrate higher temperature CO sensor 25-100ppm CO @ 200-300°C Oxide based amperometric sensors do not have sensitivity to CO and Oxide based mixed-potential sensors do not operate stabily in the presence of H₂

Future Work (FY 04)

- Optimize Sensor : Ru and Pd sputtered electrodes
- Study response of sensors to high CO contents at 300°C
- Self heated sensor

• Test in durability test stand after PROX (Mike Inbody)

Collaborations

- Look for partners to develop CO sensor
- Worked with USCAR on DOE CRADA for hydrocarbon sensor development
- Working with ARES and University of Florida on development of NO_X sensor

Conclusions

- PEM based CO sensor has stable reproducible response to 50-200ppm of CO at room temperature
- Elevated temperatures decrease the sensitivity of the sensor while improving response time (Useful sensor to protect fuel cell from excessive CO)
- Oxide based sensors can be used to measure 25-100ppm CO in H₂/CO₂/H₂O mixtures
- Stability and response time need improvement
- Oxide based sensors could be used for air(oxygen) injection control of both PROX reactor and fuel cell stack

Acknowledgements

- Bryan Pivovar and Piotr Zelenay for help with unsupported MEAs with high catalyst loadings
- Judith Valerio for help with the carbon supported MEAs with low catalyst loadings
- Francisco Uribe for help with the I-Vs

